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1. Introduction

The resesrch to be .reported on here was completed recently by Hale,
LaSalle, and Slemrod and a complete paper [1] on the subject is to appear.
The research developed in the following manner. Billotti under the direc-
tion of LafSalle comple a study [2] in 1969 of dissipative retarded
functional differential equations, and he and LeSalle then developed these
results in a more general fashion [57 which, however,'assumed the strcng
"smoothing” of initial data as occurs for retarded functional differential
equations. Discussions of this work with Hale and Slemrod interested them
in further generalizations. Slemrod saw how to do this for parabelic and
hyperbolic partial differential equations and Hele for & wide class of
functional differential equatidns of neutral type. It was then decided to
unlte the disparate points of view by identifying the general hypothesis
which lead to the principal rezults, and the éulmination cf this collatcra-

tive effort is the subject of this report.

2. . Processes

To present the background and the results succintly it is convenient
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30-002—015: Wational Science Fcundation - gP 15132 and O0ffice of Naval
Research - NONR NOUL« £7-A=0191-0009.
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To begin with the concept of a process (think of this asg & "generalized
nonaubonomous dynamical system").
+

Let R = (-o,@), R = [0,%), X bea Banach space and ul R X X X

R' -»X. Define
(6,t)x = u(o,x,t), (o,t). X X

X is the "state" space and interpret (o,t)x to Dbe the state of the sys-
tem abt time o + t if initially the state at time ¢ Wwas x.

The mapping u 1S said to define a2 process on A i u ‘has the

following properties:

(i) u 1is continuous.
(ii) (0,0) = I, the identity mapping.

(ii1) (g+s,t)(a,s) =7(U,S+t), o ¢e R and s,t € R .

Property (iii) corresponds to uniqueness in the forward direction of time.

The (positive) motion cr-orbit through (o,x) is U (o,t)x.
>0

A dynamical system is an autonomous process: (o,t) = (0,8) for

81l g e R and all t € R+. A motion is said to be periodic of period

gal

to be

wm
£

a>0 if (o,t*a)x = (o,t)x for all t e R'. A process i

periodic of period o >0, if (otw,t) = (o,t) for all o eR and 211

EN

t ekl .

For a pericdic process the Poincaré map T. X —» X defined oy

Tx = (0,0)x
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for some fixed ¢ defines discrete dymamical system with a motion or

»

o ’
orbit through x given by yﬁ(x) = U ™x. Tt follows easily that fixed
n=0

. k s s . , s s
points of T correspond to periodic motions of the periodic process of

period kw. The limit set L(x) of a discrete motion through x is
Sl /

Aset M in X is said to be postively invariant if ™ C M, negstively

e bt e .

invarient if M C TM ard invariant if M = ™. It is easy to see that

e s + ot xCmane e S e e s e

- +o0 . , A o .
Lemma 1. If y (x) is precompact, then L(x) is nonempty, compact and

invariant.

Remark. It turns out later to be useful to note that the above result holds

—

if x 1is replaced by an arbitrary compact set K.

In relation to applications one of the problems, as in the use of
this lemma, in developing a general theory is to have results which depend
upon determining boundedness of motions. One canuot, in general, give'

direct tests for compactness but can verify boundedness by use, for example,

Fag

of Liapunov functions (see [1] for references to how this difficulty was

overcome in developing a general stability theory).

3, The Prircipal Results to be Generalized

e ! n . . R .
Let . R X R —R Dbe continuous and define a system of ordinary

differential equatious



(1) % = £(t,x).
Assume that the solution ¢(t,0,t), ¢(o,0,6) = ¢ for ¢ eR and ¢ e R"
is unique, is defined for all t € Rn, and. depends continuously on
(t,0,¢). Then u(o,t,t) = @(o+t,0,&) defines a process on R"

For a periodic system of ordinary differential equations (1)
(£(t,x) = f(t+w,x) for some w >0, all t € R and all x ¢ R") let T
be the corresponding Poiﬁcaré nap defined above.

Then (1) (or T) is said to be dissipative if there is a bounded

P s

set B in R such that given X € R there is an integer n(x) with
the pronerty that T'x ¢ B for all n >n(x). (It is sufficient to
assume only that Tn(x) € B.)

This concept of dissipativeness for n = 2 was first studied oy

Levinson [4] in 1949 and more general results can be found in [5], [6],

]

and [7] The principal properties of dissipative systems, the objectiv

oi our generalization, are.

I. There is a maximal (nonampty) compact set J invariant
under T.
II. J is globally asymptotically stable.

1
ITI. For some integer k., T has a fixed point for each
0’ :

k> ko.

Levinson in [4] proved for n =2, I and ITT (with kj = 1), and
Pliss in [5] has the three results for general systems of ordinary differ-

ential equations. As will be pointed out later, it is now known for
= X b/



ordinary differential equations, that ko = 1 (there is always a periodic

solution of period w).

4. Retarded Functional Differential Fquations

With r >0 given let C = C([-r,O],Rn), be the space of continuous
functions mapping [-r,0] dnto Rn with the topoleogy of uniform convergence.
For any continuous x defined on [o-r,0+A), A >0 and any t € [0,c+A)
define x in C by x.(8) = x(t+6), 6 ¢ [-r,0]. Let fI RXC >R  be
contimuous. A function x = x(o,p) defined on and continuous on
[0-7,041A) is said to be a sclution of the rebtarded Fuociional differential

equation

(2) x(t) = £(%,%;)

on [0,0+h) with initial value ¢ at ¢ if x_=g9 and x(t) satisfies
v

2) on [o,o+A). Assume that each solution x(o.® exists and is unigue
} L™ P

on [o,w), and x(o,p)t depends continuously on (o,q,t). Then u(o,p,t) =

)

xc+t(a,@) defines a process on C. Again assume {2) is periodic of period
- R . - . -
w and T 1is the Poincare map of C into itself defined by the periodic

process u. Thea the dissipative property is as before (X = c).

Hi) There is a bounded set B in X with the property that
given x e X there is a positive integer n(x) such that T'% € B for

all n > n(x).

With the further, not unatural assumption, on f +that 1 takes
2 - 2 "



bounded sets of R X C into bounded setsg of Rn, then the solutions of

- (2) smooth initial data. In fact, expressed in terms of T, retarded func-
tional differential equations have the following smoothing property

(x =¢C):

Hé) There is an integer n such that given a bounded set

0

B in X there is a compact set B in X such that Tnx € B for

n=0,]

,2,2,..,N(W > n,) implies ™(x) e B for n=n_n + 1 ...N.

0270 ’

The integer n is the length of tiwe it takes to smooth the initial

0

data. For the retarded functional differential equation (2) o, is the

smallest integer such that DLW > r and for the ordinary differential

equation (1) ny =0 (since X

R is locally compact). With H%) it

1

is sufficient to assume in Hi) only that T '(x) e B for n(x) <n <

, that is, only long enough to smooth.

n(x) + n,;

6. TFunctional Differential Equations of Neutral Type

For a more general definition of functional differential equations
of neutral type and basic theorems concerhing solutions and their properties
see [8] and [9]. Here we consider a more special case.

Let C,f, and x, Dbe as before. Consider, in addition, the con-

t

tinuous map D. R X C - R of the form

D(t,(D) = CP(O) + Bl(t)q)(—l‘l) + oo+ Bk(t)q)('rk)

where 0 < rj < r and the Bj are wniformly continuous and bounded for
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t e R. A function x = x(o,9) defined and continuous on [o-r,0+A),
A > 0, is said to be a solution of the neutral functional differential

equation

(3) Sp D(b,x,) = £(t,%,)

on (o,0+A) with initial value ¢ at o if X =09, D(t,x;) is con-
tinuously differentiable on (o,0+A) and satisfies (3) on (o,0+A).
Assume for any (o,p) ¢ R X C that a solution of (3) exists on (o0,),
is unique, and x{o,p)(t) is continuous in (o,p,t). The function
u(o,p,t) = xc+t(c,@) defines a process on C.

In this generality one cannot expect solutions to be smoother
than the initial data and further restrictions need to be placed on D
(see t8]). More specifically, we shall assume that D is stable (see
[8]), suffice it to say here that it is shown in [8]'that D 1is stable
if and only if the solutions of D(t,xt) = 0 are uniformly asymptotically
stable. If D(t,p) and f(t,p) are w-periodic in t, D 1is stable, and
f maps bounded sets of R X C into boun&ed séts of Rn, then from re-
sults in [8] and [10] it is not difficult to see that the Poincare map T
for this class of neutral functional differential equations has the fol-

lowing smoothing properties (X = C).

Hy) To each bounded set B in X there corresponds a
compact set B*¥ in X with the property that given € > 0 there is an

integer no(sgB) such that Tnx e B for n > 0 implies Tnx € BZ for



n > nO(S,B), vhere B

o is an €-neighborhood of B*.

©
Hl) For any compact set K in X, ¥ (X) = U Tk bounded
n=0

implies Y*(K) is precompact.

The weaker smoothing here requires a stronger concept of dissipa-

tiveness:

Hi) There is a bounded set B in X such that for each x
in X there is a neighborhood OX of x and an integer N(x) such

that TO_CB for a > N(x).

7. Partial Differential Equations

Certain types of parabolic and hyperbolic partial differential
equations are known to define procesées on appropriate Sobolev spaces.
In the hyperbolicrcase there is some smoothing of initial data but this
is not so for hyperbelic equations. However, when it is known thet a
hyperbolic equétion defines a process on two Sobolev spaces X and Y
with X C Y algebraically and topologically aﬁd with the injection map
completely continuous, then the smoothing affect is replaced by the faét

that a bounded orbit in X is compact in Y.

8. General Hypotheses

As indicated by the brief discussiorn of the situation for partiél
differential equations one will, in general, want to consider a trans-

formation T of two spaces X and Y with X imbedded in Y as



described above with the injection map assumed to be at least continuous.
It then turns out that there are four hyﬁotheses needed to obtain the
generalizations of I, IT, and III stated in Section 3. All of this re-
guires congiderable explanation and is more than we can enter into here
(the reader is referred to [1]). The four hypotheses are of the follow-

ing type:

H A dissipative property

1)

'Hé) A smoothing property

I

j) A fixed point property

Hh) A smoothing property.
When X = Y these hypotheses become

H]) . There is a bounded set B C X such that for any x €X,
there is a neighborhood Ox of x and an integer N(x) such vhat

TnOX CB for n> N(i).

Hé) To each bounded set B in X . there corresponds a compaét

*

get BY in X with the property that given € > O there is an integer

no(e,B) such that T'x ¢ B for n >0 implies ™x ¢ Bg for n > nO(S,B),

where BZ is an €-neighborhood of B¥.

H%) There is an integer ko such that for every closed

bounded convex set B C X and every integer k > k., if TnB is bounded

for 0<n<k and Tk: B — B, then Tk has a fixed point in B.

H&) For any compact set B C X, y#(B) bounded implies

v (B) precompact.
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The results corresponding té I and II are implied by Hi), Hé),
and Hh)’ and the fixed point property III follows from Hl)’ H2) and Hﬁ).

In the case of partial differential equations when the injection
map is completely continuous it can be shown that Hl) implies Hl) - Hh)’
so that all that need be assumed is Hl). When there is smoothing, as in
the case of retarded or neutral functional, differential equationg, then
Hi) implies Hi) - H&) and again only a dissipative assumption is required.

Let us examine at least the case of retarded functional differential
equations in some detail. Here we have the smoothing property Hé)” and
need only assume the weaker form of dissipativeness'Hl)”. It can then be

shown tuat H and H)) imply H}) - Hj). In fact, one obtains

l)n
Theorem 1. If T satisfies Hi) and Hé), then there is a compact set K
in X with the property that given a compact set H in X there is an
open neighborhood H, of H and an integer N(H) such that Tn(Hb) CK

0
for all n > N(H).

[+2)
It can then be shown that J = r].TnK is the maximal compact in-
n=0

variant. This is done by showing first of all that J 1is well-defined
(does not depend on the choice of K from Theorem 1) and that J = L(K).
Being a limit set J 1s nonempty, compact and invariant (see the remark
below Lemma 1) and it is easy to see that J 1is the maximal compact in-
variant set and is a global attraction. Proving that J 1is stable is
nmore difficult. The fixed point’property IIT follows readily from

Theorem 1 and Schauder's fixed point theorem.



11

If one assumes, in addition to H]) and Hj) that T maps bounded
sets into bounded sets, then it follows that Tk is compact for k > L
and one can show using Browder's extension of the Schauder fixed point

theorem that Tk has a fixed point for each k >n_ (in ITI, ko = no).

0
This result has also been given by Horn in [11] as a consequence of his
extension of Schauder's fixed point theorem thaf is slightly different
from Browder's. A similar result for retarded functional differential
equations which are uniformly bounded and uniformly ultimately bounded
was given by Yoshizawa in [12] (see also [13]). In addition, Yoshizawa
assumes that the f in (2) satisfies a Lipschitz condition.

Thus for ordinary differential equations we know for dissipative
ordinary differential equations there is always & periodic solution of
period o and for dissipative retarded functional differential equations
wﬁen'fhe solutioﬁ map maps bounded sets into bounded sets and o >r
there is a periodic solution of period w.

One suspects that there should be better results and from conver-
sations at this meeting with G. Stephen Jones and J. Hale, it seems clear
that a dissipative retarded functional differenﬁial equation always has a
periodic solution of period w without any further assumptions.

From subsequent conversations with J. Hale it seems that a similar
result is true for a restriéted class of neutral functional differential

equations (it appears necessary, for exaemple, to assume that the operator

D is autonomous).

- 9. Concluding Remarks

The rather abstract theory presented here shows how the theory of‘
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disgipative systems of ordinary differential equations can be extended to
include a wide class of functional and partial differential equations.
Since the basic hypotheses are all in terms of boundeduess, %inding suf-
ficient conditions in terms of Liapunov functions is not too-difficult
and we are undertaking now to work ocut some nontrivial examples to illus-

trate how the theory can be applied.
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